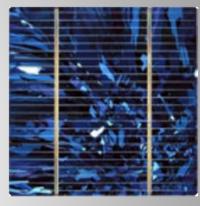
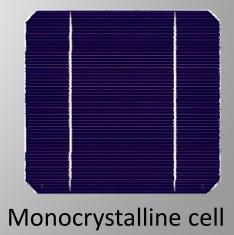


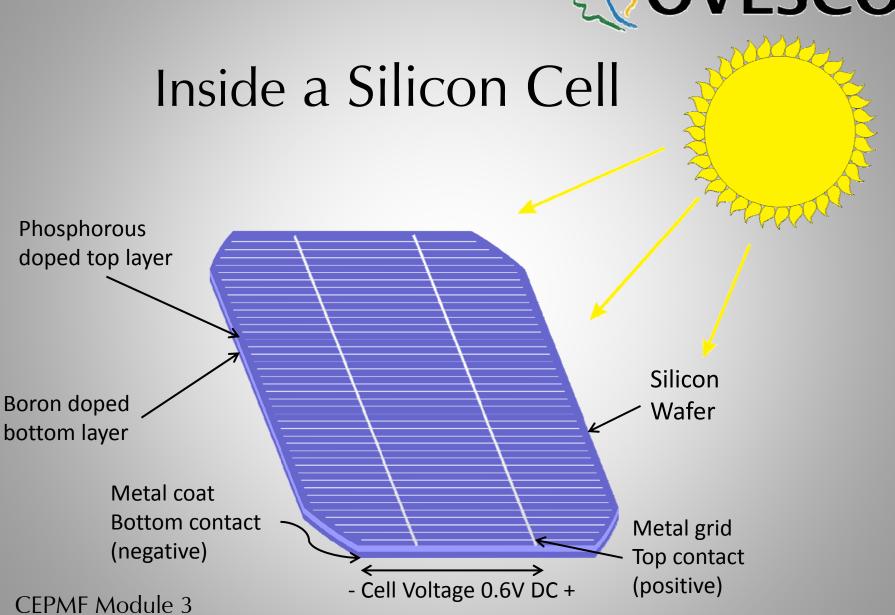
Photovoltaic Systems


Why Photovoltaic?

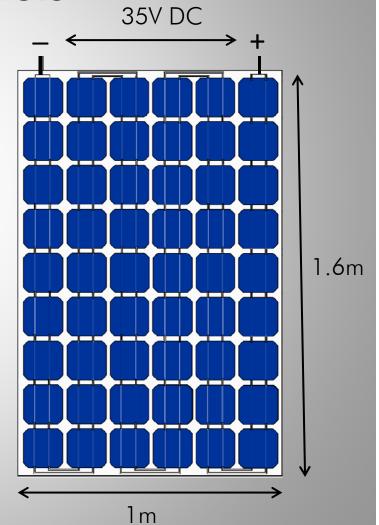
- Few regulatory hurdles
- Planning permission often not required
- Relatively easy to get if required
- Little up-front investment at risk
- Quickly installed, income quickly obtained
- Generation accurately predictable



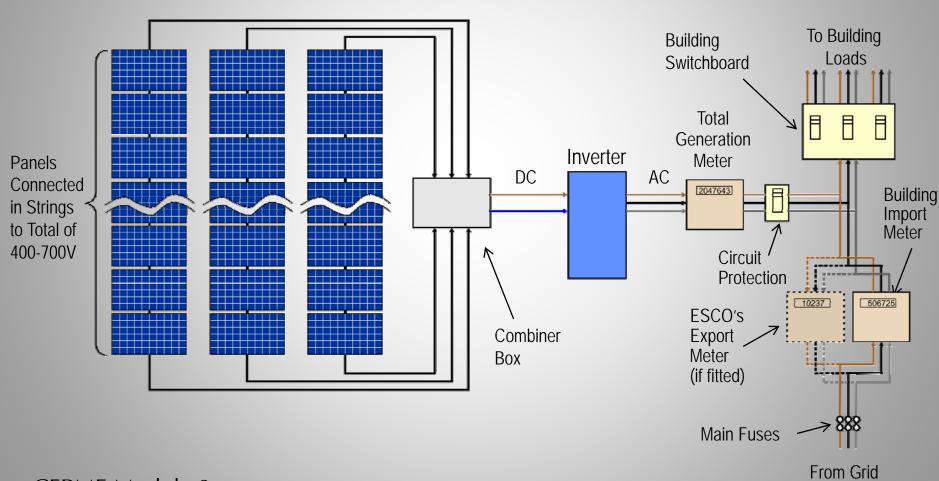
Silicon Photovoltaic Cells


- 37,000,000 kW of PV made in 2013
- World market share
 64% monocrystalline silicon
 18% polycrystalline silicon
- Even greater UK dominance of silicon
- Poly lower efficiency but cheaper
- Difference in price closing

Polycrystalline cell



Photovoltaic Panels


Typical Grid Connected PV Panel

- Rating 220W 330W at this size
- Price in bulk 45p/W to £1/W
- Cheapest per kW with ≈250W panels
- All cells connected in series
 voltage = 0.6V x number of cells
- Weight 15kg 18kg
- 50 70 mm thick

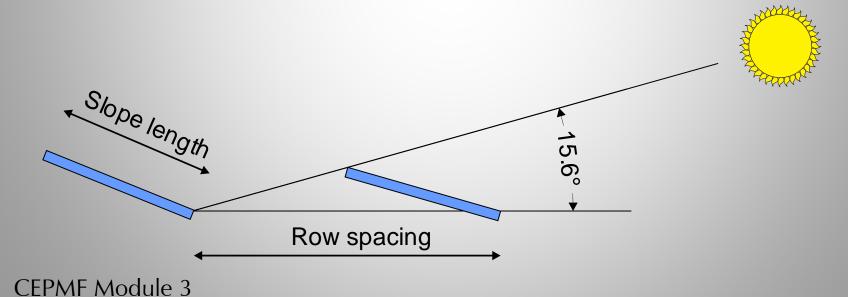
System Connection

Site Considerations

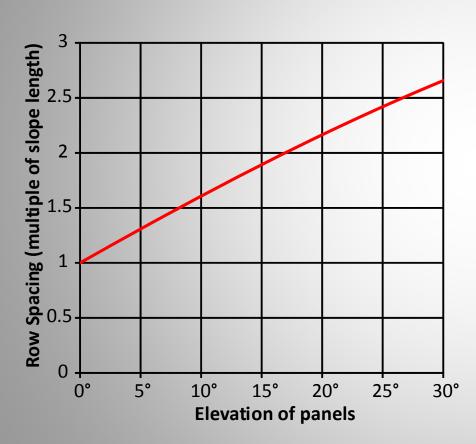
- Size of roof
- Orientation of roof
- Shading of roof
- Strength and durability of roof
- Ease of access to install system
- Capacity of building electrical supply
- Special status of building
- Ability of someone to commit to a 20 year lease.

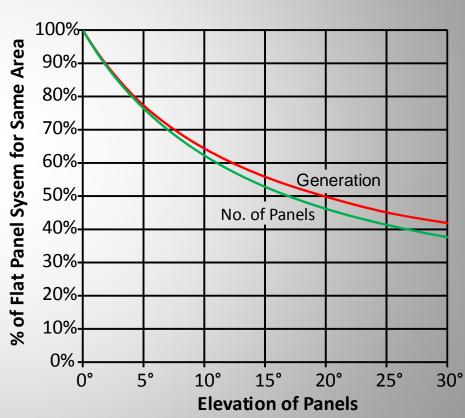
Size of Roof (sloping)

- Use ruler on Google Earth
- Measure plan length of slope
- Estimate elevation of slope φ
- Slope length = plan length/cos φ
- Draw panels shortened in slope direction by factor of cos φ
- Leave 1m around edge to if you hope to escape planning consent
- Count panels –
 at 250W, 4 panels = 1kW

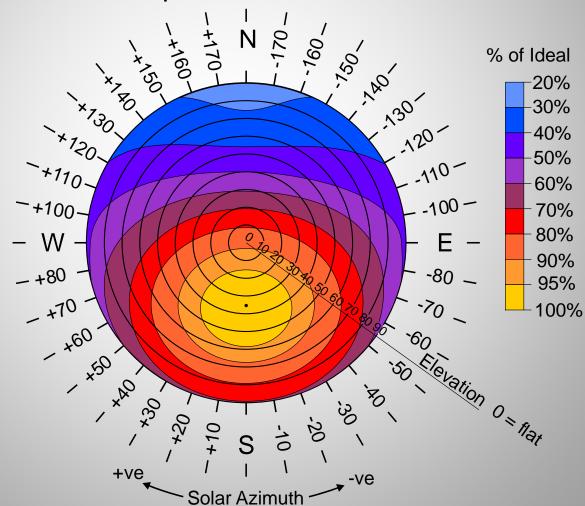


If $\phi = 45^{\circ}$, $\cos \phi = 0.707$ For $1m \times 1.6m$ panels For landscape, draw panels $0.707m \times 1.6m$ For portrait, draw panels $1m \times 1.13m$


Size of Roof (Flat)


- Option 1 lay panels flat lose 11% output
- Option 2 angle panels up lose area need planning permission
- If angled, space so one row does not shade next at noon midwinter

Size of Roof (Flat)



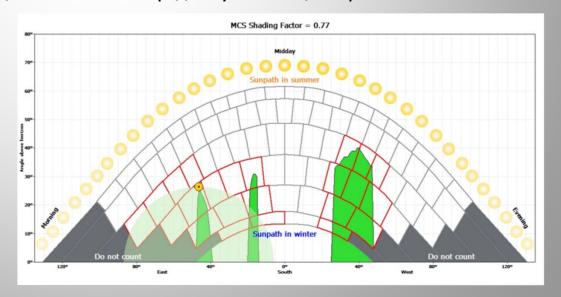
Orientation

Not as important as some think

Excel tables can be downloaded from MCS at http://tinyurl.com/ndz9jsk Use zone 2 for south east

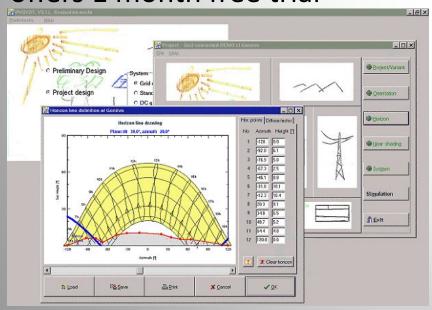
Ideal for this zone 1132kWh per year for each kW of system

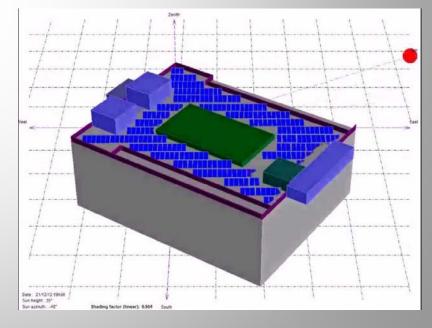
CEPMF Module 3


Shading

More important than some realise

- MCS Guide to the Installation of Photovoltaic systems 2012 (http://tinyurl.com/mch7jrc) gives a method of estimating a shading factor.
- The horizon and far shading are drawn on sunpath diagram. Near shade objects (< 10m) drawn as circles, diameter = height, top of circle at top of object.
- Shading factor SF = 100% 1% for each affected squares. e.g. 23 squares give SF = 77%
- Good guide at http://tinyurl.com/I56m9u5 & http://tinyurl.com/kzbpcvd


CEPMF Module 3



Shading

- Better Shading Factors can be obtained by building 3D models with software packages such as PVSYST http://www.pvsyst.com/en/software/download
- PVSYST is expensive, £685 up to 30kW £891 unlimited size, but offers 1 month free trial

CEPMF Module 3

Strength and Durability of Roof

- Roof will need to be inspected by an engineer usually arranged by the installer
- Panels & fixings average 15 kg/m² \simeq 250 mm fresh snow
- Loading of flat roof system can be higher if held down by ballast
- Wind will exert significant pressure (or lift, if from behind)
 especially near the edge and even more so at the corners
- Avoid asbestos, but not everything that looks like asbestos is
- Felted and tarred roofs may not last 20 years

Ease of Access

- The Work at Height Regulations 2005 will apply to nearly all roof mounted systems
- Approved scaffolding or mobile lifts will usually be needed
- Access may be expensive if:-
 - The roof is adjacent to road, railway or someone else's land
 - Access requires reaching across lower non-load bearing areas
 - The public, especially children, normally have access below
 - The ground below is very soft and sloping
- Ground area is needed for panels, equipment, delivery vehicles and, if not available in building, accommodation for the installers

Capacity of Building Electrical Supply

- The supply to the building needs to have sufficient rating to cope with PV output
- Distribution Network Operator (DNO) will decide how big a system can be connected
- They usually require 3 phase above 7kW
- System can never be bigger than building rating
- If building rating not known, judge by meter tails
- 3 incoming fuses, 3 phase 1 fuse, single phase

Diameter	Circumference	Rating/Phase
8mm	25mm	12.7kW
10.5mm	33mm	14.5kW
13.5mm	39mm	18.4kW
12.5mm	42mm	23.1kW
15.1mm	47mm	32.2kW
16.8mm	53mm	46.0kW

Status of Building

Planning permission is required if the building is:-

- A Listed Building or a building within the curtilage of one
- Within the curtilage of a National monument
- Flats or maisonettes
- Within a Conservation Area, National Park, Area of Outstanding Natural Beauty or World Heritage Site and the panels are on the principal or side elevation and are visible from the road (non-domestic - fronts the road)
- Has had Permitted Development Rights restricted as a condition of planning permission
- The Local Planning Authority has issued an Article 4 Direction
- Panels are higher than top of the building (excluding. Chimneys)
- The panels within 1m of the edge of the roof or another wall
- The panels are more than 200mm above the wall or roof except for nondomestic flat roof where the limit is 1m

Someone to Commit to 20 year Lease

- To pay your investors you need to ensure that the system will operate for 20 years
- Ideally you want someone who owns the freehold of the property and is the one who benefits from the electricity
- Often commercial properties are rented or on a short tem lease.
- Property companies may want to be free to redevelop the property
- Charitable trusts can be very long winded in reaching agreements

Simple Rules of Thumb

For a really good site:-

Each rated kilowatt = $4 \text{ panels} = 6.5 \text{ m}^2$

Each rated kilowatt generates 1000 kWh a year

Each rated kilowatt costs £1000 (ex VAT)

Thank You